

Zernike-type phase contrast X-ray microscopy at 4 keV Photon energy with 60 nm resolution

Ulrich Neuhäusler (ESRF, Grenoble, France) Gerd Schneider (BESSY, Berlin, Germany)

Collaborators:

Erik Anderson, Bruce Harteneck (CXRO, LBL, Berkeley, CA, U.S.A.) Wolfgang Ludwig (ESRF), Dirk Hambach (IRP, Universität Göttingen, Germany)

Acknowledgements:

Bob Baker, Jean Susini, Remi Tucoulou, Sylvain Laboure, Eric Gagliardini, Gilles Berruyer, Franck Demarcq (ESRF)

Outline

Introduction: The ID 21 X-ray microscopes (using Fresnel zone plates):

- scanning X-ray microscope (SXM), 2 8 keV, elemental mapping of medium Z elements and chemical analysis (XANES) by fluorescence
- full-field transmission X-ray microscope (TXM), 4 keV, high-resolution imaging, phase contrast

Principle of Zernike phase contrast

Application examples

Zernike phase contrast X-ray microscopy on microelectronics samples

- SEMATECH serpentine resistor
- AMD microprocessor

Summary, Conclusions and Outlook

Fresnel zone plates as X-ray lenses

focal length
$$f = 2 \cdot r_n \cdot dr_n / \lambda$$

resolution
$$\delta = 0.61 \cdot \lambda / \text{N.A.}$$

 $\rightarrow \delta = 1.22 \cdot \text{dr}_n$

Light microscope image (top) and Scanning electron micrograph (bottom) of a Au Fresnel zone plate, fabricated by D. Hambach (IRP, Universität Göttingen, Germany)

Zone-plate based X-ray microscopes: two optical schemes

Advantages

- dose efficient
- multiple detection in parallel
- applicable to bulk materials
- easily variable image field size

Disadvantages

- relatively slow
- sophisticated instrument

Advantages

- fast suitable for tomography
- relatively simple instrumentation
- higher spatial resolution

Disadvantages

- transmission detection only
- dose inefficient

Zernike Phase contrast: Schematic of the ID 21 TXM setup

Photograph of the ID 21 full-field microscope (TXM) endstation setup for Zernike phase contrast imaging

Zernike Phase contrast - Principle

If $\delta << \lambda$: W_1 can be decomposed as sum of W_2 (direct, undiffracted light) and W_3 (light diffracted from object structures) where W_2 and W_3 are phase shifted by $\lambda/4$

Amplitude sample:

Phase shift of $\lambda/2$ between direct & diffracted light: W_1 significantly smaller than $W_2 \rightarrow \text{good contrast}$

Phase sample:

 W_1 has almost the amount as $W_2 \rightarrow$ weak contrast

How to increase the contrast?

Phase shifting of the undiffracted light W₂ using a phase ring

Phase shift $\lambda/4$:

Positive phase contrast Object detail brighter

Phase shift $3\lambda/4$:

Negative phase contrast Object detail darker

F. Zernike 'nobel prize 1953

Phase contrast X-ray microscopy @ 4 keV – Applications I

SEMATECH-Sample:
Copper Interconnects
within a SiO₂ dielectric
in a serpentine resistor,
smallest line width
225 nm

Positive phase contrast 45 % (0.7 µm high Ni phase ring)

Negative phase contrast 40 % (2.2 µm high Ni phase ring)

In comparison:

Amplitude contrast 7 %

Contrast reversal between:

- Amplitude contrast and positive phase contrast
- positive and negative phase contrast image

Zernike Phase contrast @ 4 keV - Applications II

AMD next generation microprozessor: Images in negative phase contrast

Zernike Phase contrast @ 4 keV – Applications III

AMD-Sample:

Positive phase contrast images
Studies on defects in a
microprocessor chip
Possibility of probing bulk
material (20 µm thick)

Diameter 450 nm

Conclusions

Full-field X-ray microscope (TXM) using highly coherent undulator radiation:

High numerical aperture (N.A.) Fresnel zone plates with large diameter used as condenser

- provide incoherent or just partially coherent illumination required for full-field X-ray microscopy due to
 - high N.A. that allows use of a center stop to block the highly coherent on-axis 0th order beam
 - a diameter larger than the lateral coherence length of the incident radiation at the experimental endstation
- provide matched N.A. illumination for employing high resolution zone plate objectives
- provide sufficient spatial separation of 0th and 1st diffraction orders so as to allow phase shift manipulation of the 0th order (Zernike Phase contrast)

Summary and Outlook

Full-field X-ray microscope (TXM) in Zernike-type phase contrast mode

Zernike-type Phase contrast microscopy successfully demonstrated close to its theoretically predicted characteristics (resolution, contrast) in the several keV regime (4 keV)

Where to go next?

- Extend the applicability to different kinds of samples (biology, materials science etc.) by choosing matched phase rings
- High-resolution tomography:
 - Assumption of parallel projection for tomography is met
 - micro zone plate depth-of-focus & image field available: 3D imaging of a sample volume of 15 x 15 x 15 µm³ at sub-100 nm resolution feasible